target='_blank'>
width='150px'
height='113px'
border='0'>
MiG fighters was mysterious during the cold war. You always wanted to see more of it. The mystery still lingers on
It is true that the U.S.S.R.'s Frontal Aviation forces have generally not undertaken deep interdiction missions and that the service's aircraft are primarily designed for air superiority or ground attack. They are also more mission-specific than the major U.S. fighters. The MiG-21 and -27 are designed for air superiority; the Su-7 and -17 for close support; and the Su-24 for penetrating ground attack against hardened targets. Within Voiska PVO, too, aircraft are designed for specific, limited roles. Pilot training, for example, concentrates on ground control interception, not free air combat, and the MiG-25, while performing high-altitude, highs-peed interception ably, is far less capable in other roles. The Su-9 was designed as a point defense interceptor; the Yak-28, as a low-altitude interceptor. The Tu-28 was built specifically for long-range intercepton.10 None possess the multirole capabilities of U.S. fighters.
It is also true that Soviet aircraft do not exhibit the same level of technology as U.S. aircraft. But one should not underestimate Soviet equipment, for in some areas it performs very well. The U.S.S.R.'s electro-optical and laser systems are highly capable, as are its ECM and infrared equipment. But overall, Soviet designers do not build into their aircraft the high-performance characteristics typical of U.S. forces. Their onboard computers are less sophisticated, and they fall far short of the United States in the use of composites and miniaturized avionics.11 Indeed, the MiG-25 in which Lieutenant Viktor Belenko defected in September 1976 did not even make extensive use of advanced metals. The aircraft was constructed primarily of steel, with titanium found only in structures subject to extreme heating, such as the wing leading edges. The resultant weight penalty reduced the amount of equipment that could be carried, and this constraint was still further exacerbated by the aircraft's use of vacuum tubes rather than solid-state circuiting in its electronics. A comparative examination of climb, acceleration, turn radius, and radar capability reveals the superiority of the F-15 and F-16 to late-model MiG-21s and the MiG-25, and even the older F-4 compares not unfavorably.12
Underlying the differences between U.S. and Soviet aircraft are divergent approaches to aircraft design. The United States has emphasized complexity, versatility, and technological sophistication and has been willing to sacrifice a certain amount of quantity in exchange for higher quality. Within the Soviet Union, however, radically different practices were fostered among the research and development (R&D) community during Stalin's rule and have remained persistent features of Soviet design policy to this day. The five most prominent of these recurrent patterns are simplicity, commonality, prototype modeling, incrementalism, and reliance on foreign technology.
The simplicity of Soviet designs relates to their modest performance specifications, just sufficient to allow completion of the minimum tasks required and no more. Simplicity is evident in the designs as a whole, in the utilization of conventional, readily available construction materials, and in the lack of detailed finishing. Commonality refers to the use of standardized parts and assemblies on various types of aircraft whenever possible. Alternatively, an entire aircraft series, on reaching obsolescence in its original role, may be modified to fulfill some new system requirement. (This is not, however, the multirole principle found in NATO designs, in that Soviet aircraft have usually not been designed with more than one function in mind. It is only after an aircraft can no longer perform the specific mission for which it was originally created, or when an unforeseen requirement has arisen for which no aircraft yet exists, that an attempt is made to find a new use for the older series.) The ASh-82 engine, for example, was used to outfit the World War II-vintage La-5 fighter, the Tu-2 frontal bomber, and the Pe-8 long-range bomber. Indeed, twenty years later it was still in service on the I1-14 passenger carrier and the Mi-4 helicopter.13 Similarly, the Su-7 ground-attack fighter and the Su-9 interceptor, although fitted with different wings, armament, and equipment to suit their particular roles, nevertheless possess identical fuselages and tails.14 To take another example in a somewhat different vein, the M-4 Bison, though currently being phased out of its bomber role, is being modified to serve as a tanker, and a version of the old Tu-95 Bear has been developed to operate in an antisubmarine warfare capacity.15
The third feature of the U.S.S.R.'s design process, prototype modeling, specifies the purpose to which research, development, testing, and evaluation are being directed. In the Soviet Union, newly designed aircraft fall into two categories, "test" (opytnye) and "experimental" (eksperimental'nye). Test models are designed to serve as prototypes of forthcoming series production aircraft, and the emphasis is placed on feasibility and existing technologies. Experimental aircraft, on the other hand, are not intended for series production but are built to test a particular new technology or flight characteristic--record-breaking speed, new maneuvers, a new design principle, etc.16 Prototype modeling, then, provides a link between the static traits of Soviet design policy (simplicity and commonality in series production aircraft) and the dynamic features that foster innovation (incrementalism and foreign input).
The conservatism of Soviet aircraft design policy is nowhere better exemplified than in its stress on innovation through incremental improvement. The approach blends well with the nation's predilection for commonality, since when only modest, step-by-step changes are introduced to upgrade performance, follow-on aircraft are left with many of the same features as their predecessors. While experimental prototypes (I and Ye series) occasionally introduce major improvements in technology, the predominant pattern has been gradual upgrading. Even what appear to be discontinuous advances in the performance characteristics of deployed aircraft have, in fact, been achieved little by little through prototype testing. The transition from the MiG-19 to the delta-wing MiG-21, for example, involved five intervening prototypes: (1) the Ye-50, a sweptwing aircraft with an upgraded MiG-19 engine; (2) the Ye-2A, a sweptwing model equipped with the future MiG-21 production engine; (3) the Ye-5, a deltawing prototype with the same fuselage and engine as the Ye-2A; (4) the Ye-6, a preproduction series very similar to the Ye-5; and, finally, (5) the production version, the MiG-21F/Fishbed-C. This model itself has undergone extensive upgrading since its introduction in 1960, so that the most recent version has twice the range and payload of the original.17
The other major avenue to qualitative improvement employed by the Soviets is to borrow from Western technology and experience. Numerous examples could be given, from the jet engine to integrated circuitry. Such innovation may take the form of partial borrowing or complete replication (bez otsebiatiny). As A. Fedoseev, an applied scientist who recently defected from the Soviet Union, explains: "The themes of new military developments are taken from foreign technical journals and intelligence information on foreign equipment, and often arise as a result of obtaining actual examples of the equipment from abroad."18